146 research outputs found

    In-flight flow visualization results from the X-29A aircraft at high angles of attack

    Get PDF
    Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability

    Systems Engineering Approach for the Orion Pad Abort-1 Flight Test

    Get PDF
    No abstract availabl

    F-16XL Wing Pressure Distributions and Shock Fence Results from Mach 1.4 to Mach 2.0

    Get PDF
    Chordwise pressure distributions were obtained in-flight on the upper and lower surfaces of the F-16XL ship 2 aircraft wing between Mach 1.4 and Mach 2.0. This experiment was conducted to determine the location of shock waves which could compromise or invalidate a follow-on test of a large chord laminar flow control suction panel. On the upper surface, the canopy closure shock crossed an area which would be covered by a proposed laminar flow suction panel. At the laminar flow experiment design Mach number of 1.9, 91 percent of the suction panel area would be forward of the shock. At Mach 1.4, that value reduces to 65 percent. On the lower surface, a shock from the inlet diverter would impinge on the proposed suction panel leading edge. A chordwise plate mounted vertically to deflect shock waves, called a shock fence, was installed between the inlet diverter and the leading edge. This plate was effective in reducing the pressure gradients caused by the inlet shock system

    Clinical characteristics of patients with acute pulmonary embolism

    Full text link
    Among 117 patients with pulmonary embolism (PE) and no prior cardiac or pulmonary disease who participated in the National Heart, Lung, and Blood Institute Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED) study, combinations of clinical characteristics were identified that were present in nearly all in whom the diagnosis of PE was made.1 We now assess these as well as additional combinations of characteristics in the entire population of patients with acute PE who participated in PIOPED, irrespective of the presence of prior cardiopulmonary disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28981/1/0000008.pd

    Modeling dimethylsulphide production in the upper ocean

    Get PDF
    Dimethylsulphide (DMS) is produced by upper ocean ecosystems and emitted to the atmosphere, where it may have an important role in climate regulation. Several attempts to quantify the role of DMS in climate change have been undertaken in modeling studies. We examine a model of biogenic DMS production and describe its endogenous dynamics and sensitivities. We extend the model to develop a one-dimensional version that more accurately resolves the important processes of the mixed layer in determining the ecosystem dynamics. Comparisons of the results of the one-dimensional model with an empirical relationship that describes the global distribution of DMS, and also with vertical profiles of DMS in the upper ocean measured at the Bermuda Atlantic Time Series, suggest that the model represents the interaction between the biological and physical processes well on local and global scales. Our analysis of the model confirms its veracity and provides insights into the important processes determining DMS concentration in the oceans

    Development of a low-aspect ratio fin for flight research experiments

    Get PDF
    A second-generation flight test fixture, developed at NASA Dryden Flight Research Center, offers a generic testbed for aerodynamic and fluid mechanics research. The new fixture, a low-aspect ratio vertical fin shape mounted on the centerline of an F-15B aircraft lower fuselage, is designed for flight research at Mach numbers up to 2.0. The new fixture is a composite structure with a modular configuration and removable components for functional flexibility. This report describes the multidisciplinary design and analysis approach used to develop the fixture. The approach integrates conservative assumptions with simple analysis techniques to minimize the time and cost associated with its development. Presented are the principal disciplines required for this effort, which include aerodynamics, structures, stability, and operational considerations. In addition, preliminary results from the first phase of flight testing are presented. Acceptable directional stability and flow quality are documented and show agreement with predictions. Future envelope expansion activities will minimize current limitations so that the fixture can be used for a wide variety of high-speed aerodynamic and fluid mechanics research experiments

    Development and validation of an index of musculoskeletal functional limitations

    Get PDF
    BACKGROUND: While musculoskeletal problems are leading sources of disability, there has been little research on measuring the number of functionally limiting musculoskeletal problems for use as predictor of outcome in studies of chronic disease. This paper reports on the development and preliminary validation of a self administered musculoskeletal functional limitations index. METHODS: We developed a summary musculoskeletal functional limitations index based upon a six-item self administered questionnaire in which subjects indicate whether they are limited a lot, a little or not at all because of problems in six anatomic regions (knees, hips, ankles and feet, back, neck, upper extremities). Responses are summed into an index score. The index was completed by a sample of total knee replacement recipients from four US states. Our analyses examined convergent validity at the item and at the index level as well as discriminant validity and the independence of the index from other correlates of quality of life. RESULTS: 782 subjects completed all items of the musculoskeletal functional limitations index and were included in the analyses. The mean age of the sample was 75 years and 64% were female. The index demonstrated anticipated associations with self-reported quality of life, activities of daily living, WOMAC functional status score, use of walking support, frequency of usual exercise, frequency of falls and dependence upon another person for assistance with chores. The index was strongly and independently associated with self-reported overall health. CONCLUSION: The self-reported musculoskeletal functional limitations index appears to be a valid measure of musculoskeletal functional limitations, in the aspects of validity assessed in this study. It is useful for outcome studies following TKR and shows promise as a covariate in studies of chronic disease outcomes.National Institutes of Health (NIH P60 AR 47782; NIH K24 AR 02123

    Ultrasound-Enhanced Drug Transport and Distribution in the Brain

    Get PDF
    Drug delivery in the brain is limited by slow drug diffusion in the brain tissue. This study tested the hypothesis that ultrasound can safely enhance the permeation of drugs in the brain. In vitro exposure to ultrasound at various frequencies (85 kHz, 174 kHz, and 1 MHz) enhanced the permeation of tritium-labeled molecules with molecular weight up to 70 kDa across porcine brain tissue. A maximum enhancement of 24-fold was observed at 85 kHz and 1,200 J/cm2. In vivo exposure to 1-MHz ultrasound further demonstrated the ability of ultrasound to facilitate molecule distribution in the brain of a non-human primate. Finally, ultrasound under conditions similar to those used in vivo was shown to cause no damage to plasmid DNA, siRNA, adeno-associated virus, and fetal rat cortical neurons over a range of conditions. Altogether, these studies demonstrate that ultrasound can increase drug permeation in the brain in vitro and in vivo under conditions that did not cause detectable damage
    corecore